JOM 23606PC

Preliminary Communication

Triphospha-ferrocenes as ligands. Crystal structures of [Fe(η^5 -C₅Me₅)(η^5 -C₂⁻¹Bu₂P₃)-Ru₃(CO)₁₁] and the novel cluster complex [Fe(η^5 -C₅Me₅)(η^5 -C₂⁻¹Bu₂P₃)Ru₃(CO)₉] involving side-on and end-on coordination of three ruthenium atoms

Christian Müller, Rainer Bartsch, Axel Fischer and Peter G. Jones

Institut für Anorganische und Analytische Chemie der Technischen Universität, Hagenring 30, W-3300 Braunschweig (Germany)

(Received January 21, 1993)

Abstract

The lone-pair electrons of one or two directly bonded phosphorus atoms of the $C_2^{1}Bu_2P_3$ ring in the triphospha-ferrocene complex $[Fe(\eta^5-C_5Me_5)(\eta^5-C_2^{1}Bu_2P_3)]$ can coordinate to one or three ruthenium atoms to afford the novel triruthenium carbonyl cluster complexes $[Fe(\eta^5-C_5Me_5)(\eta^5-C_2^{1}Bu_2P_3)Ru_3(CO)_{11}]$ and $[Fe(\eta^5-C_5Me_5)(\eta^5-C_2^{1}Bu_2P_3)Ru_3(CO)_{9}]$, respectively. The structures of the triruthenium carbonyl cluster fragments were determined by single crystal X-ray diffraction studies.

Syntheses and structures of penta- and hexaphosphorus analogues of ferrocene, hexaphosphorus analogues of chromocene and η^3 -transition metal complexes of the C₃^tBu₃P₂ ring system have been described previously [1–7]. Unlike their simple metal-locene analogues, these complexes have further coordinating potential towards other transition metal centres by virtue of the availability of the ring phosphorus lone-pair electrons that are not involved in the η^3 - or η^5 -metal coordination. The recently [8] described complex [Fe(C₂^tBu₂P₃)₂Ru₃(CO)₁₀], I, is of special interest since it represents the first example of attachment of a transition metal carbonyl cluster to another η^5 -C₂^tBu₂P₃-coordinated ring systems in a hexaphospha-ferrocene complex.

We now describe the first example of a phosphorus sandwich compound in which the two adjacent phos-

phorus atoms of a η^5 -C₂⁺Bu₂P₃ ring are interlinked by a ruthenium carbonyl cluster. In this case the mixed cyclopentadienyl-phosphacyclopentadienyl complex [Fe(η^5 -C₅Me₅)(η^5 -C₂⁺Bu₂P₃)], **II**, was used as starting material; interlinkage via the two phospha-cyclopentadienyl rings as described for **I** can thus be ruled out.

Complex II, which is easily accessible from [Li-(dme)₃]⁺[C₂⁺Bu₂P₃]⁻⁻ [9]. LiC₅Me₅ and FeCl₂ (DME = 1,2-dimethoxyethane), reacted with Ru₃(CO)₁₂ at 65°C in DME during 4 h to afford the novel brown trirutheniumn nonacarbonyl complex [Fe(η^5 -C₅Me₅)-(η^5 -C₂⁺Bu₂P₃)Ru₃(CO)₉], **IV**, in 75°c yield.

Only traces of the red by-product [Fe(η^{5} -C₅Me₅)-(η^{5} -C₅⁴Bu₂P₃)Ru₃(CO)₁₁]. III. were obtained *, and so this could not be characterized by NMR spectroscopy. Under milder conditions (45°C for 2 h) the yield of III was higher, but at 90°C no III was detected. Obviously complex IV is more thermodynamically stable than complex III, and this leads to exclusive formation of IV from III under vigorous conditions.

The molecular structure of **III** is shown in Fig. 1. The Ru1–P2 bond [2.391(1) Å] is somewhat longer than the corresponding phosphorus–ruthenium bond in I [2.341(4) and 2.336(4) Å] [8].

The simplicity of the ${}^{31}P{}^{1}H$ NMR spectrum of complex IV, which shows an AX, pattern, indicates

Correspondence to: Dr. R. Bartsch.

^{*} Preparations of **II**. **III** and **IV**. FeCl₂ (150 mg, 1.18 mmol) was added to 6 ml of a solution of $\text{Li}(C_8\text{Me}_5)$ (157 mg, 1.10 mmol) and $[\text{Li}(\text{dme})_3]^+[C_2^{-4}\text{Bu}_2\text{P}_3]^+$ (505 mg, 0.99 mmol) in monoglyme. The mixture was stirred at room temperature for 16 h, the solvent was removed, and the residue was extracted with n-hexane. The extract was subjected to column chromatography (kieselgel/inhexane) to give red crystals of **II** (yield 32%).

A solution containing II (328 mg, 0.78 mmol) and $Ru_4(CO)_{12}$ (576 mg, 0.90 mmol) in 2 ml monoglyme was heated to 65°C with stirring for 4 h. Work-up as above gave traces of III as red crystals (yield not determined) and brown crystals of IV (yield 75%).

that the two adjacent phosphorus atoms of the original triphospha-ferrocene II must have become linked by η^1 -coordination to two or three of the ruthenium atoms of the cluster carbonyl **. This was subsequently confirmed by a single crystal X-ray diffraction study (see Fig. 2) which reveals, in addition to the η^1 -coordination of the ruthenium atoms Ru1 and Ru3, a direct interaction between Ru2 and the two phosphorus atoms P1 and P2.

This mode of attachment can be regarded as $\mu_3 \cdot \eta^2$ ligation of a PP and PC multiple-bonded system to three metal centres. A similar side-on and end-on coordination was observed by Huttner [10] in [Cr₃(CO)₁₀(^tBuP)(^tBu₂P₂)], in which a Z-diphosphene unit RP=PR is incorporated into a cluster and two metal centres are more strongly bonded than the third. A similar pattern is observed in **IV**; the weaker interactions Ru2–P1 and Ru2–P2 are indicated by dotted lines in Scheme 1. The bonds of the C₂^tBu₂P₃ ring in **IV** are, as expected, longer than the corresponding bonds in **III**. The PP bond length in **IV** [2.131(2) Å] is in good agreement with the corresponding bond length [2.112(3) Å] in [Cr₃(CO)₁₀(^tBuP)(^tBu₂P₂)] [10].

III: MS (FAB, *m*-nitrobenzene as matrix): m/z 980 (M⁺ - 2 CO, 3%). 952 (M⁺ - 3 CO, 2), 924 (M⁺ - 4 CO, 2), 868 (M⁺ - 6 CO, 5), 136 (C₅Me₅ + H⁺, 100). IR (n-hexane): ν (CO) 2095 (m), 2060 (vs), 2035 (s), 2028 (vs), 2012 (s) cm⁻¹.

IV: NMR spectra: ¹H (CDCl₃): δ 1.50 (s, 18H, ¹Bu); 1.79 (s, 15H, C₅Me₅). ¹³C (CDCl₃): 12.15 (s, C₅Me₅); 35.63 (m, CMe₃); 39.91 (m, CMe₃); 91.48 (s, C₅Me₅); 199.44 (m, CO). ³¹P{¹H} (CDCl₃): (AB₂), δ 14.74 (P^A), 9.77 (P^B), ²J(PP) 43.2 Hz. MS (FAB, *m*-nitrobenzene as matrix): m/z 980 (M⁺, 1%), 136 (C₅Me₅ + H⁺, 83) and fragments caused by subsequent loss of CO; IR (n-hexane): ν (CO) 2066 (vs), 2025 (vs), 2016 (vs), 1998 (s), 1981 (s), 1977 (s) cm⁻¹.

Fig. 1. The molecular structure of **III** showing the atom numbering scheme. Selected bond lengths are: $P1-P2 \ 2.107(2)$, $P1-C12 \ 1.763(4)$, $P3-C12 \ 1.756(4)$, $P3-C11 \ 1.764(4)$, $P2-C11 \ 1.761(4)$, $Ru1-P2 \ 2.391(1)$, $Ru1-Ru2 \ 2.882(1)$, $Ru1-Ru3 \ 2.836(1)$, $Ru2-Ru3 \ 2.835(1)$, $Fe-P1 \ 2.338(1)$, $Fe-P2 \ 2.330(1)$, $Fe-P3 \ 2.319(2)$, $Fe-C11 \ 2.189(4)$, $Fe-C12 \ 2.205(4)$ Å.

The coordination of two adjacent phosphorus atoms to three transition metal centres involving side-on and end-on coordination represents an unusual bonding mode for phosphorus sandwich compounds. The synthesis of related polymetallic compounds is the subject of present studies.

Diffraction data were determined with a Siemens-Nicolet R3 diffractometer fitted with a LT-2 low temperature unit using monochromated Mo-K α radiation. The structure was solved by direct methods and refined anisotropically on F with rigid methyl groups.

Fig. 2. The molecular structure of **IV** showing the atom numbering scheme. The weak interactions Ru2-P1 and Ru2-P2 are indicated by dotted lines. Selected bond lengths are: P1-P2 2.131(2), P1-C12 1.772(5), P3-C12 1.775(5), P3-C11 1.772(6), P2-C11 1.776(6), Fe-P1 2.358(2), Fe-P2 2.336(2), Fe-P3 2.305(2), Fe-C11 2.142(5), Fe-C12 2.163(6), Ru1-P1 2.377(2), Ru3-P2 2.333(2), Ru2-P1 2.541(2), Ru2-P2 2.508(2) Å.

^{**} II: NMR spectra: ¹H (CDCl₃): δ 1.39 (s, 18H, ¹Bu); 1.85 (s, 15H, C₅Me₅). ¹³C (CDCl₃): δ 12.79 (s, C₅Me₅); 36.71 (m, CMe₃); 38.87 (m, CMe₃); 86.59 (s, C₅Me₅). ³¹P{¹H} (CDCl₃): (AB₂), δ 38.10 (P^A), 48.24 (P^B), ²J(PP) 44.9 Hz. MS (70 eV, EI): m/z 422 (M⁺, 100%). 365 (M⁺ - ¹Bu, 4), 284 (M⁺ - ¹Bu₂C₂, 73), 253 (M⁺ - ¹Bu₂C₂P, 11).

III: Crystal data: $C_{31}H_{33}FeO_{11}P_3Ru_3$. M = 1033.5, triclinic, space group *P*1, *a* = 9.035(3), *b* = 12.609(5), *c* = 17.173(6) Å, α = 98.82(3). β = 94.56(3), γ = 97.24(3)°, *U* = 1908.0(9) Å³, *Z* = 2, *D*_{calc} = 1.799 g cm⁻³, *F*(000) = 1020, *R* = 0.029 for 5379 unique reflections with *F* > 4 σ (*F*).

IV: Crystal data: $C_{29}H_{33}FeO_9P_3Ru_3$, M = 977.5, monoclinic, space group $P2_1/n$, a = 10.419(2), b = 29.821(7), c = 11.738(3) Å, $\beta = 108.93(2)^c$, U = 3450.0(11) Å³, Z = 4, $D_{calc} = 1.882$ g cm⁻³, F(000) = 1928, R = 0.034 for 4182 unique reflections with $F > 4\sigma(F) ***$.

Acknowledgements

We thank Prof. Dr. R. Schmutzler for the generous support of this work, Dr. S. Hietkamp (Council of Scientific and Industrial Research, Pretoria, South Africa) for a gift of dodecacarbonyltriruthenium, and the Fonds der Chemischen Industrie for financial support.

References

- 1 R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Chem. Soc., Chem. Commun., (1987) 1146.
- 2 R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Chem. Soc., Chem. Commun., (1988) 819.
- 3 R. Bartsch, P.B. Hitchcock and J.F. Nixon. J. Organomet. Chem., 356 (1988) C1.
- 4 R. Bartsch, D. Carmichael, P.B. Hitchcock, M.F. Meidine, J.F. Nixon and G.J.D. Sillett, J. Chem. Soc., Chem. Commun., (1988) 1615.
- 5 R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Organomet. Chem., 373 (1989) C17.
- R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Chem. Soc., Chem. Commun., (1990) 472.
- 7 R. Bartsch, P.B. Hitchcock and J.F. Nixon, J. Organomet. Chem., 340 (1988) C37.
- 8 R. Bartsch, A. Gelessus, P.B. Hitchcock and J.F. Nixon, J. Organomet. Chem., 430 (1992) C10.
- 9 G. Becker, W. Becker, R. Knebl, H. Schmidt, U. Weber and M. Westerhausen, *Nova Acta Leopold.*, 59 (1985) 55.
- 10 J. Borm, G. Huttner and L. Zsolnai, Angew. Chem., Int. Ed. Engl., 97 (1985) 1069.

^{***} The program system "Siemens SHELXTL PLUS" was employed. Full details of the structure determination have been deposited at the Fachinformationszentrum Karlsruhe, Gesellschaft für Wissenschaftlich-technische Information mbH. W-7514 Eggenstein-Leopoldshafen 2, Federal Republic of Germany. Any request for this material should quote a full literature citation and the reference number CSD 57041.